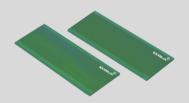


MML technology for film capacitors miniaturization

Tchavdar Doytchinov

4th Space Passive Component Days (SPCD)

International Symposium 11-14 October 2022 ESA/ESTEC, Noordwijk, The Netherlands

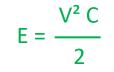

Exxelia MML (Miniature Micro-Layer) **Capacitors**

300-350 J/dm³

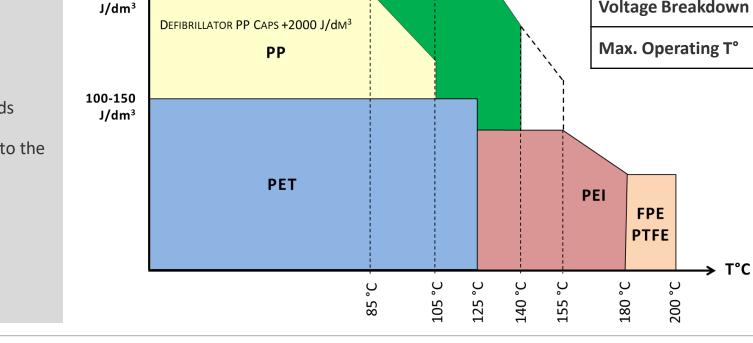
200-250

Similar to stacked capacitors, the MML are produced in a single step process:

The individual capacitors are stacked in parallel:



The packaging and leads allow to protect the capacitor and adapt it to the application:

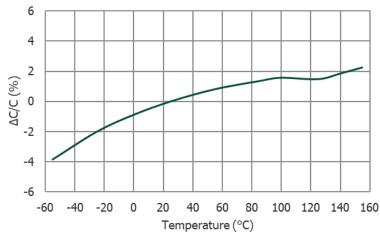

$$C = \frac{\varepsilon S}{e}$$

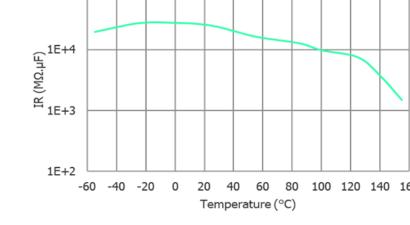
	PARAMETER	MML	PP	PET
MML®	Dielectric Constant	3.2	2.2	3.3
	Dissipation Factor	60 . 10 ⁻⁴	2 . 10 ⁻⁴	50 . 10 ⁻⁴
RILLATOR PP CAPS +2000 J/dm³	Voltage Breakdown	> 800V/μm	700V/μm	500V/μm
PP	Max. Operating T°	140°C	105°C	125°C

Main MML advantages:

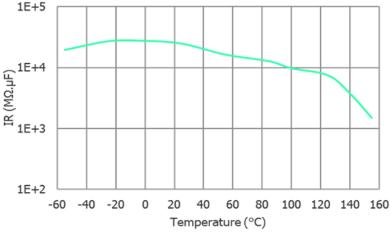
- Miniaturization
- Higher temperature

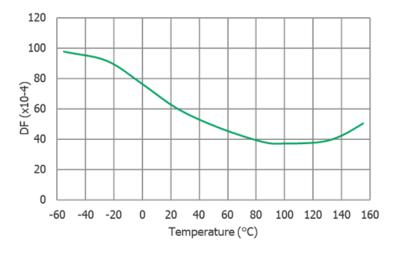
MML is well adapted for DC Filtering


Some MML Characteristics



Main Electrical Characteristics versus Temperature


Capacitance drift vs temperature

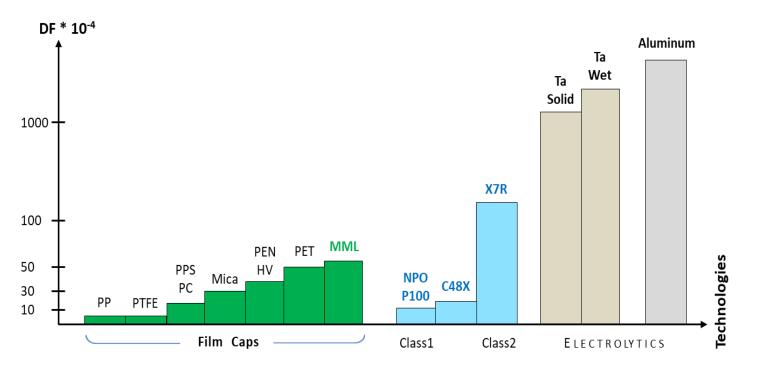

- MML present a low capacitance drift for **DC** filtering applications
- There is no capacitance drift under voltage (as for other Film technologies)

Insulation Resistance vs temperature

- Stable Insulation Resistance up to 125°C
- Decreasing of the IR upper 125°C (increasing of the leakage current)
- Voltage derating between 125°C / 140°C

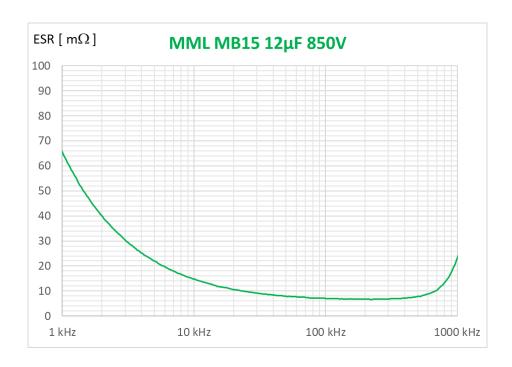
Dissipation Factor vs temperature

Dissipation factor presents dielectric losses and **power behavior** of the technology


- Relatively low Dissipation Factor
- DF decreases for higher temperatures

MML power behavior versus other technologies

Dissipation Factor for Main Capacitor Technologies



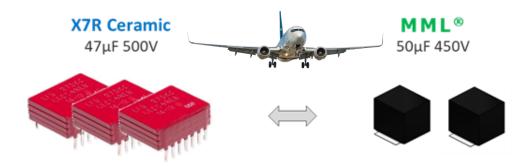
 MML technology has much lower dielectric losses compare to Ceramic capacitors and other technological families

$$P_{LOSSES} = I_{RMS}^2$$
 . ESR

$$ESR = R_S + \frac{DF}{2\pi fC}$$

The DF, presenting dielectric losses, limits MML power behavior for low frequency AC filtering

MML miniaturization versus X7R ceramics



TYPICAL CHARACTERISTICS		FILM MML [®]	CERAMIC X7R	
RELIABILITY	Self-Healing	Excellent	NO	
RELIABILIT	Failure Mode	Open Circuit	Short-Circuit	
	T° = -55°C / +125°C	-4% / +2% (typical)	+15% / - 15%	
CAPACITANCE DRIFT	Under Rated Voltage	No Drift	-30% to -50%	
	Operating Life	± 5%	± 12.5%	
POWER	DF (Tg d)	< 100 . 10 ⁻⁴ (60 . 10 ⁻⁴ typical)	< 250 . 10 ⁻⁴ (150 . 10 ⁻⁴ typical)	
BEHAVIORS	RMS Current	Low ESR for HF	Higher Dielectric Losses	
	Discharging	High dV/dt & i²t	Fragile -> Cracks	
MASSE	for same Size	Low (~ 4 times lower)	Heavy	
ThermoMech.	withstanding	Flexible Structure	Fragile, T° shock Sensitive	
CASING	type	Case packaging needed	Chips available	
Voltage Range	Low voltages	adapted for > 50V _{DC}	low voltage available	

Example of MML capability to replace some big stacked Ceramic capacitors

	2
--	---

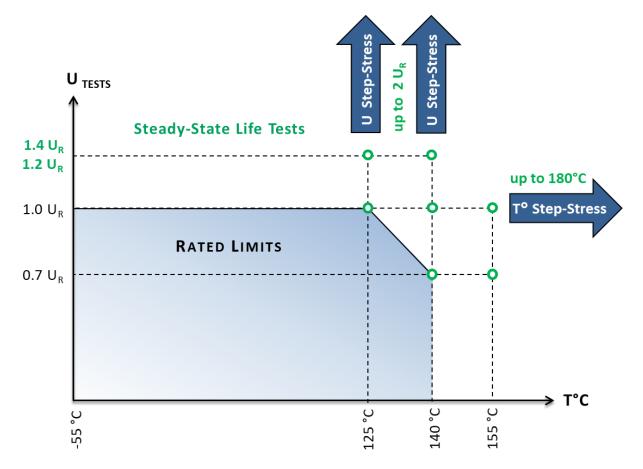
Criteria	Ceramic X7R	MML®	
Total Capacitance	3*47μF = 141μF	2 * 50 μF	
Total Cap requirement	> 100 μF	> 100 μF	
Operating temp	-55°C / 125°C	-55°C / 140°C	
DF (typical) at 25°C	150 . 10 ⁻⁴	60 . 10 ⁻⁴	
Total Volume	121 cm ³	40 cm ³	
Energy Density (after drift)	145 J/dm³ ~ 100 J/dm³	250 J/dm ³	
Total Weight	~ 650 g	~ 65 g	
Failure Mode	Short Circuit	Open Circuit	

Technological Evaluation vs Product Qualification

ESA STANDARDS SYSTEM IS THE ONLY HAVING A REAL TECHNOLOGICAL APPROACH

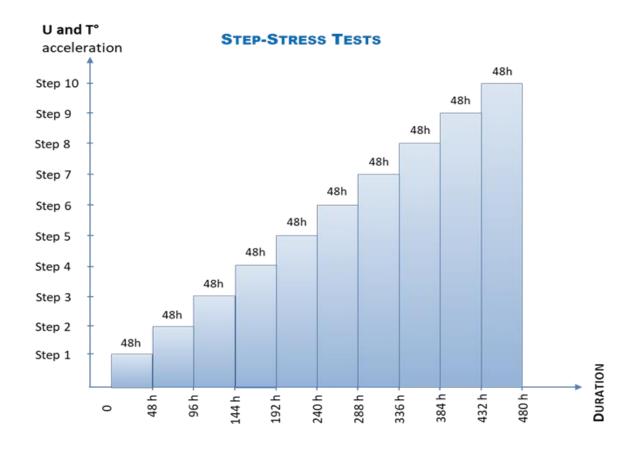
EVALUATION -> to demonstrate the technological limits, acceleration factors, EOL characteristics, failure mode, reliability level

QUALIFICATION -> to qualify Design / Product / Process -> demonstrate it periodically


MML Rated Limits and Evaluation Tests

GLOBAL BUSINESS
UNIT CAPACITORS

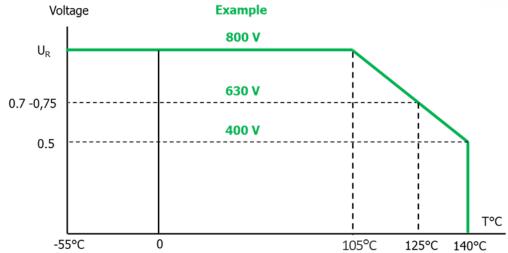
MML capacitor testing with Technological Evaluation Approach


Goals: to define acceleration factors, EOL characteristics, demonstrate the open circuit failure mode, reliability level

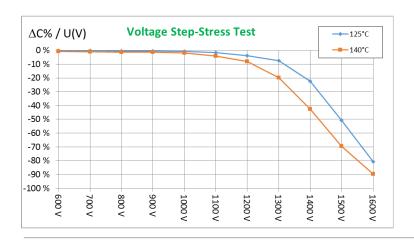
Ongoing tests since 2019

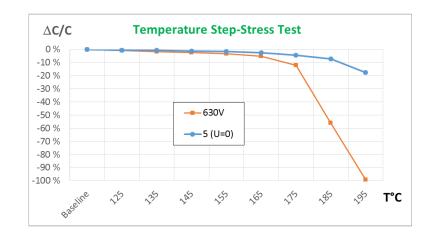
 $\begin{aligned} & \text{Voltage Step-Stress} \\ & \mathbf{U}_{n+1} = \mathbf{U}_n + \ \mathbf{0.2} \ . \ U_{RC} \\ & \text{at constant temperature} \end{aligned}$

Temperature Step-Stress $T_{n+1} = T_n + 10$ °C under constant voltage



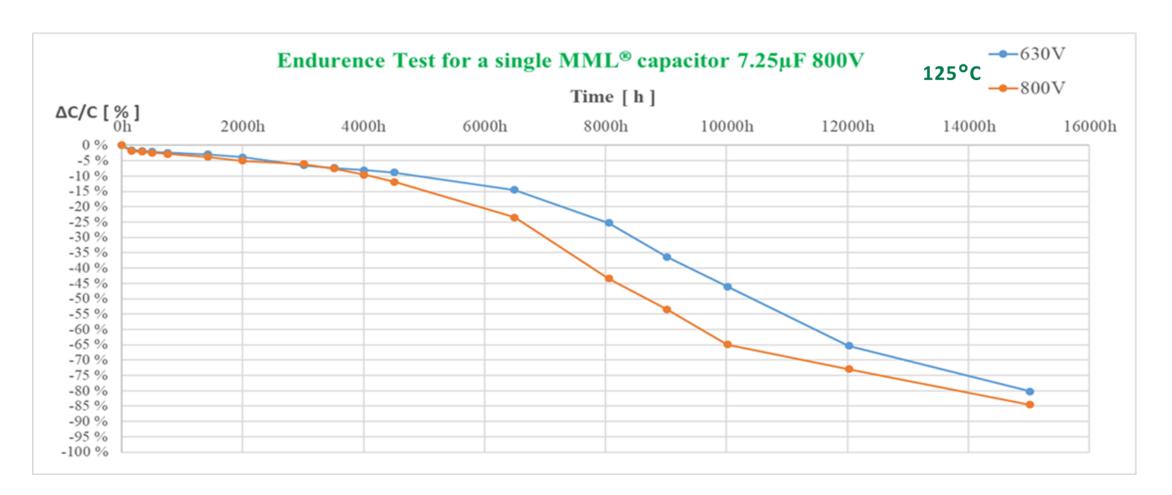
MML Evaluation Tests – Example of Step-Stress testing




MML cap Element	Dimensions (mm)		L = 55 W		= 21,3	H = 4
C @ 1 kHz	7,25 μF ± 10%		W			н
U _R	800 V _{DC}					
Operating temperature	-55 °C / +140 °C					L
DF @ 1 kHz	≤ 70 .10 ⁻⁴			Т		T .
IR @ (500V- 1min)	≥ 2200 MΩ		I			I
Dimensions*	L = 60 mm	W	= 30 mm		H = 9 r	nm

Voltage Step-Stress up to 2*Ur without any short-circuit failure thanks to selfhealing behavior (step 48h at 125°C and 140°C).

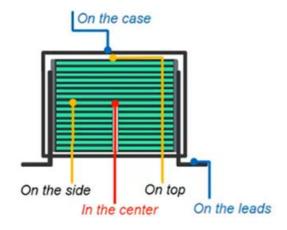
T° Step-Stress (step 48h under 630V) validated up to 180°C with stable characteristics and no short-circuit failure.

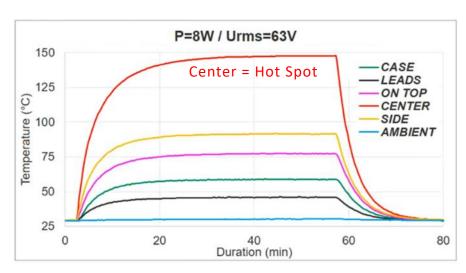


MML Evaluation – Steady-State Accelerated Life Tests

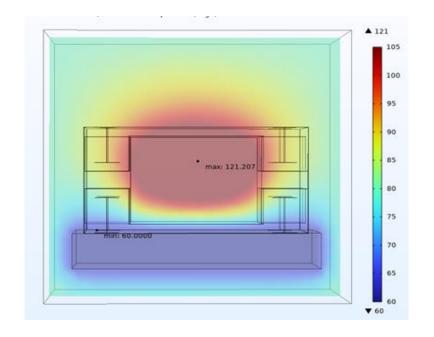
Example of MML capacitor long endurance testing at 125°C

More than 15 000 hours testing for Open-Circuit Failure Mode demonstration





MML Thermal Management Evaluation


Example of R_{TH} evaluation

The size reduction of the MML capacitors has the consequence of decreasing the external surface needed for the thermal exchange.

For high-power filtering, a compromise must be made between size reduction and capacitance value in order to limit the ripple current and internal heating.

Multiscale modeling for a capacitor integrated on cooled base plate

